The N terminus of the influenza B virus nucleoprotein is essential for virus viability, nuclear localization, and optimal transcription and replication of the viral genome.
نویسندگان
چکیده
UNLABELLED The nucleoprotein (NP) of influenza viruses is a multifunctional protein with essential roles throughout viral replication. Despite influenza A and B viruses belonging to separate genera of the Orthomyxoviridae family, their NP proteins share a relatively high level of sequence conservation. However, NP of influenza B viruses (BNP) contains an evolutionarily conserved N-terminal 50-amino-acid extension that is absent from NP of influenza A viruses. There is conflicting evidence as to the functions of the BNP N-terminal extension; however, this has never been assessed in the context of viral infection. We have used reverse genetics to assess the significance of this region on the functions of BNP and virus viability. The truncation of more than three amino acids prevented virus recovery, suggesting that the N-terminal extension is essential for virus viability. Mutational analysis indicated that multiple regions of the protein are involved in the nuclear localization of BNP, with the entire N-terminal extension required for this to function efficiently. Viruses containing mutations in the first 10 residues of BNP demonstrated few differences in nuclear localization; however, the viruses exhibited significant reductions in viral mRNA transcription and genome replication, resulting in significantly attenuated phenotypes. Mutations introduced to ablate a previously reported nuclear localization signal also resulted in a significant decrease in mRNA production during early stages of viral replication. Overall, our results demonstrate that the N-terminal extension of BNP is essential to virus viability not only for directing nuclear localization of BNP but also for regulating viral mRNA transcription and genome replication. IMPORTANCE The multifunctional NP of influenza viruses has roles throughout the viral replication cycle; therefore, it is essential for virus viability. Despite high levels of homology between the NP of influenza A and B viruses, the NP of influenza B virus contains an evolutionarily conserved 50-amino-acid N-terminal extension that is absent from the NP of influenza A viruses. In this study, we show that this N-terminal extension is essential for virus viability, and we confirm and expand upon recent findings that this region of BNP is required for nuclear localization of the protein. Furthermore, we demonstrate for the first time that the N terminus of BNP is involved in regulating viral mRNA transcription and replication of the viral genome. As the NP of influenza A virus lacks this N-terminal extension, these viruses may have evolved separate mechanisms to regulate these processes.
منابع مشابه
New Anti-Influenza Agents: Targeting the Virus Entry and Genome Transcription
Introduction: The emergence and spread of the pandemic H1N1 influenza virus in 2009 indicates a limitation in the strategy to control the infection, despite a long-established vaccination programme and approved antivirals. Production the proper vaccine against influenza is difficult due to the genetic recombination of virus in the event of pandemic and co-circulation of drug-resistance variants...
متن کاملThe N-terminal extension of the influenza B virus nucleoprotein is not required for nuclear accumulation or the expression and replication of a model RNA.
The nucleoprotein (NP) of influenza B virus is 50 amino acids longer at the N-terminus than influenza A virus NP and lacks homology to the A virus protein over the first 69 residues. We have deleted the N-terminal 51 and 69 residues of the influenza B/Ann Arbor/1/66 virus NP and show that nuclear accumulation of the protein is unaffected. This indicates that the nuclear localization signal is n...
متن کاملPomegranate peel extract inhibits internalization and replication of the influenza virus: An in vitro study
Objective: Influenza virus, which is associated with high level of morbidity and mortality, has been recently considered a public health concern; however, the methods of choice to control and treat it are limited. Our previous study showed anti-influenza virus activity of pomegranate peel extract (PPE). In this study, the mechanism through which PPE acts against influenza virus...
متن کاملInterfering With Lipid Raft Association: A Mechanism to Control Influenza Virus Infection By Sambucus Nigra
Sambucus nigra (elder) are broadly used species to treat microbial infections. Thepotential antiviral activity and mechanism action of elder fruit (EF) in human epithelium cell(A549) cultures infected with H9N2 influenza virus were determined. The effect of variousconcentrations of EF on influenza virus replication was examined by using virus titration,quantitative real time RT-PCR, fusion and ...
متن کاملInterfering With Lipid Raft Association: A Mechanism to Control Influenza Virus Infection By Sambucus Nigra
Sambucus nigra (elder) are broadly used species to treat microbial infections. Thepotential antiviral activity and mechanism action of elder fruit (EF) in human epithelium cell(A549) cultures infected with H9N2 influenza virus were determined. The effect of variousconcentrations of EF on influenza virus replication was examined by using virus titration,quantitative real time RT-PCR, fusion and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 88 21 شماره
صفحات -
تاریخ انتشار 2014